ALMOST-PERFECT MODULES
نویسندگان
چکیده
منابع مشابه
Tilting Modules over Almost Perfect Domains
We provide a complete classification of all tilting modules and tilting classes over almost perfect domains, which generalizes the classifications of tilting modules and tilting classes over Dedekind and 1-Gorenstein domains. Assuming the APD is Noetherian, a complete classification of all cotilting modules is obtained (as duals of the tilting ones).
متن کاملAlmost uniserial modules
An R-module M is called Almost uniserial module, if any two non-isomorphic submodules of M are linearly ordered by inclusion. In this paper, we investigate some properties of Almost uniserial modules. We show that every finitely generated Almost uniserial module over a Noetherian ring, is torsion or torsionfree. Also the construction of a torsion Almost uniserial modules whose first nonzero Fit...
متن کاملϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملSubgame Perfect Implementation With Almost Perfect Information
The theory of incomplete contracts has been recently questioned using or extending the subgame perfect implementation approach of Moore and Repullo (1988). We consider the robustness of this mechanism to the introduction of small amounts of asymmetric information. Our main result is that the mechanism may not yield (even approximately) truthful revelation as the amount of asymmetric information...
متن کاملRESULTS ON ALMOST COHEN-MACAULAY MODULES
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2010
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089510000297